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A new 3D code for electromagnetic induction tomography with intended applica-
tions to environmental imaging problems has been developed. The approach consists
of calculating the fields within a volume using an implicit finite-difference frequency-
domain formulation. The volume is terminated by an anisotropic perfectly matched
layer region that simulates an infinite domain by absorbing outgoing waves. Exten-
sive validation of this code has been done using analytical and semianalytical results
from other codes, and some of those results are presented in this paper. The new code
is written in Fortran 90 and is designed to be easily parallelized. Finally, an adjoint
field method of data inversion, developed in parallel for solving the fully nonlinear
inverse problem for electrical conductivity imaging (e.g., for mapping underground
conducting plumes), uses this code to provide solvers for both forward and adjoint
fields. Results obtained from this inversion method for high-contrast media are en-
couraging and provide a significantimprovement over those obtained from linearized
inversion methods. © 2001 Academic Press

1. INTRODUCTION

Although electromagnetic surveying techniques of both the electrical-current-injecti
type and the magnetic-field type have been well known for many years [1], the resl
were typically only semiquantitative, and efforts to turn these surveys into true quar
tative 3D maps of electrical conductivity distribution in the subsurface have only be
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attempted in the past 10 to 15 years [2-4]. One of the main reasons for this delay
surely been the necessity of using large computer memories and fast computing mach
because it does not take a very large 3D forward modeling problem in typical geoph
ical settings to swamp even today’s most advanced computing platforms. Of course,
electromagnetic codes for various other applications are commonly available. One w
developed example of such a multipurpose 3D electromagnetic code that has been t
and used by many researchers is the 3D-MAFIA group of codes [5, 6]. These co
were developed principally for laboratory-scale design studies and other forward m
eling purposes, but have limitations (such as the need for carefully designed nonreflec
boundary conditions [7]) for use in geophysical imaging and data-inversion applicatio
However, recent work on 3D magnetotellurics and controlled source electromagnetic
derground imaging as it has been pursued within the geophysics community includes
pers by Hohmann [8], Mackiet al. [9], Torres-Verdin and Habashy [10], Newman and
Alumbaugh [11-13], and Smith [14, 15]. A recent review of the state of the art in 3D El
modeling for such geophysical applications including detailed comparisons of results [
demonstrated both the limitations and the lack of consensus concerning the best met
for computing EM fields in applications to very inhomogeneous, strongly conducting ea
materials.

Our specific interest here is in controlled source electromagnetic induction tomograj
(EMIT), which is a comparatively new geophysical imaging method that has been purs
with extensive field studies in recent years [3, 4, 17, 18]. But our ability to turn these fie
data into well-resolved images of conducting inclusions, structures, and fluid plumesin
earth has been hampered by the requirements for high accuracy forward computatiol
useful levels of resolution. (We expand on the unique physical characteristics and imag
abilities of EMIT in Section 2.) For these applications, we have developed a new 3D cc
for use in electromagnetic induction tomography, especially for environmental imagi
problems. The finite-difference frequency-domain (FDFD) formulation is based on that
[19], and an anisotropic perfectly matched layer (PML) approach [7, 20] is used to spec
the nonreflecting boundary conditions. The unique features of the method include perfe
matched layer boundaries [7, 20], specifically tailored to provide optimum results in t
target frequency range (the lower kHz regime), and code structure that permits conver
computation of the adjoint field operator (which is needed for the data-inversion mett
developed in parallel [21]).

Section 2 introduces the electromagnetic induction tomography problem in more de
Section 3 describes the algorithm implemented in the code. Section 4 gives a serie
examples to provide code validation in various relevant limiting cases. Section 5 discus
how the code has been used in the adjoint field approach to the data-inversion problen
electromagnetic induction tomography and is followed by our conclusions.

2. ELECTROMAGNETIC INDUCTION TOMOGRAPHY

For enhanced recovery of oil and gas in the earth or for various types of environmel
cleanup efforts, it is often desirable to obtain images of conducting fluids undergrou
The porous earth and some typical pore fluids like hydrocarbons tend to be comparati
poor conductors, but other pore fluids that may be used in the extraction process (¢
as brines) may be quite good electrical conductors. So imaging of conducting plur
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FIG. 1. A possible EMIT experimental setup. Three boreholes surround the volume where we wish to imz
the electrical conductivity. A z-directed dipole transmitter is deployed in one borehole, indicated in the lower I
The data are then gathered either in the other boreholes or at the surface or both, indicdsed\tsurvey is
performed by repeating this process using a number of different transmitter locations. The imaginary @art of
is proportional to the electrical conductivity distribution in the medium and is what we want to reconstruct frc
the measured magnetic field data.

(inreal time if possible) is often a goal for monitoring of reservoirs and site characterizatic
Figure 1 illustrates what might be a typical configuration if three boreholes are availa
for the magnetic field data collection. The source is a magnetic field generated with cur
in wire coils. Received signals are the measured (small) changes in magnetic field in o
boreholes, or at the surface of the earth.

Another EM field method that might also be used in similar circumstances is grou
penetrating radar (GPR) [22, 23]. However, this method employs EM fields at frequenc
in the range of 100 MHz or higher, whereas EMIT uses frequencies usually in the range
1-10 kHz. At 100 MHz and above, it is a good approximation to think of GPR as a wav
propagation method, although the wave does not penetrate very far into the earth whel
earth is wet and the wetting agent is a conductor because it is then highly attenuatec
1-10 kHz, it is a good approximation to think of EMIT as a diffusion process—definitel
not a wave-propagation process. Then the imaginary part of the complex dielectric cons
¢ Is significantly larger than the real part, and so wave propagation gives way to dif
sion. Because the frequencies are so much lower, the diffusing magnetic fields pene
farther into the earth than a GPR signal can propagate, while behaving rather differe
from EM signals at either higher frequencies (GHz) or much lower (quasistatic) freque
cies (dc). These differences are what make the EMIT method useful, but also require s
special efforts to construct EM codes that behave as they should in the proper freque
regime.

Dorn et al. [21] have shown how to invert EMIT data using an adjoint field method
and the inversion scheme makes direct use of the code that we now describe. The re
obtained from this inversion method for high-contrast media are encouraging and [



3D ELECTROMAGNETIC CODES 833

vide a significant improvement over results obtained from linearized inversion methc

[3].

3. FDFD ALGORITHM

The goal of this code development effort is to produce an accurate and efficient forw
simulation for EM fields that can then be easily used for inversion of EMIT field data. Tl
FDFD formulation presented here is an extension to lossy media of a method develope
lossless media in [19]. The mesh-truncation approach involves using an anisotropic abs
ing PML following the ideas in [7, 24]. The absorbing regions have material paramets
similar to those proposed in [25]. The code is written in Fortran 90, and ease of porta
ity to various high performance computing platforms has been one of our design crite
throughout its development.

3.1. Finite-Difference, Frequency-Domain Formulation

To develop a system of equations to determine the electric and magnetic fields with
volume, the integral form of Maxwell’s curl equations (Aemg’s and Faraday’s laws),

ij.dezjw/(g.E).ﬁdSJr/J.ﬁds 1)
C S S

and

j{EdZ:—jw/(;IH)-ﬁdS—/M-ﬁdS @)
C S S

are used. Herd is the impressed electric-current densiéy,is the impressed magnetic-
current densityg ‘and i are diagonal dyads of dielectric permittivity and magnetic per
meability, respectively, an@ is the boundary of the open surfaBeThe integrals in (1)
and (2) are applied to discrete elements (rectangular blocks) within the volume assun
approximately constant fields within each block and using the elementary relations

a/2
/ f.d¢e — afy, ©)
—a/2
and
a/2 rb/2
f.AdS— abf,, 4)
—-a/2J-bj2

where f, is a center value associated with thith cell shown in Fig. 2. Note that the
discrete electric field is located at the center of an edge, and the discrete magnetic field f
through the centroid of a face. Also, thath cell is normally referred to as cell, (j, k), but

for notational convenience, a cell mapping using symbols suah @dl, r, f, b (for up,
down, left, right, front, back, respectively) to specify the six cells surroundingithecell

is used. This mapping is presented in Table I. Cells other than the six cells adjacent to
six faces may also be labeled using the same mapping. For example, relativenpazsl|
dfiscell( —1, j,k—1)andceldlbiscell ( — 1, ] — 1, k+ 1).
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FIG. 2. The field quantities associated with tmh cell (, j, k).

The discretized forms of (1) and (2) result in an equation for each field component. T
resulting equations are cumbersome; however, presenting each expression using ma
provides a compact form. Thus, extending the lossless and isotropic methods of Beilen
et al. [19] to our case of lossy and anisotropic media, and using notation defined in 1
Appendix, (1) and (2) become

ATD;h = jweoDa 8+ Dx (5)
and
AD; &= —jwuoDa D, h — Dy, (6)
respectively. The apparent lack of symmetry in the pair of equations (5) and (6) arises fr
differences in the method of discretiziagand i« on the staggered grid (see the Appendix

for details). Solving for the magnetic field (to eliminate it from the equations) in (6) ar
then substituting the result in (5) yield

ATD;D,'D,'ADE — k3D € = —jwpoDaj — ATDD, ', )
TABLE |
Labels for Cells Surrounding
m = Cell (i, j, k)
d=cell( —1,j,k) u=cell (i +1,j,k)
I=cell(i,j—1k) r=cell(,j+1Kk)

f=cell G, j. k- 1) b=cell G, j,k + 1)
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which has a form entirely analogous to that commonly used in finite-element codes, i.€
Vx (it VXE) =k -E=—joued =V x ;1 M, (8)

even though our goal here is to develop a finite-difference code.

A problem commonly observed in numerical computations of Maxwell's equations aris
because of a possible resonance at zero frequency. If this occurs, the resulting m
has an eigenvalue at zero and therefore is neither positive definite nor invertible. For
geometries considered here, the fields for resonant frequency of 0 Hz are generated
by electric charge within the volume. Such charges may develop as an artifact of numei
roundoff when evaluating the vector wave equation—especially at lower frequencies (¢
for example, Smith [14]). This problem is avoided here by eliminating any charge with
the volume using a term analogous to

VIV (& -B)] =0, 9)

forcing the gradient of the charge densjiy= V - (¢ - E) to be zero. The numerical
implementation is achieved by starting from Gauss’s law for the electric field in integt
form,

/V-(E,-E)dV:j{(E,-E)ﬂdS:O, (10)
v s
to arrive at the discretized matrix expression

[D;'D, BT (D, BDA)]& =0 (1)

where the matrices in parentheses arise from discretizing (10), while the remaining matr
in the square brackets arise from discretizing (9) after the application of an integral ident
The matrixB (not to be confused with the magnetic-flux density, or magnetic indudsipn,
is also defined in the Appendix. When (11) is added to (7), the result is

(ATD;D;'D,'AD, + D;'D},BTDy},BDA. — kiDa. )€
= —jouoDz] — ATD;D, . (12)

However, a more symmetric form is obtained by multiplying throughow)w and then
rewriting (12) as

(Dy’ATD;D;*D'AD, % + D, /2 D},B" Dy %,BDA.D, V/? — k3Da.)D;/%8
= —jouoD;*Daj — Dy/’ATD; D i (13)

Note the appearance in these two equations of the complex conjugate Bigtriwhich
becomes necessary when losses are incorporates.into
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3.2. PML Formulation for Mesh Truncation

The mesh is truncated using PMLs that absorb electromagnetic waves following
general ideas in [7]. The PML is a representation of anisotropic media satisfying

D=c¢pm-E and B=ppw-H, (14)
where
gomL=2-A and jpm = ji- A. (15)

The symbolA stands for a diagonal dyad that has entries selected to absorb incid
electromagnetic waves. The form of this dyadic quantity is determined by the normal to
PML interface. As an example, for a PML interface with a hormal inZtérection, the
form of A is given by [20, 25],

_ a0 o0
A,=|0a 0 |, (16)
0 0 Ya
in whicha is given by
f(x.y,2)
a=14—"—, 17
+ 1+ jow (7)

whereq is a constant and (X, y, ) is a function of position that is zero at the interface
between the modeling space and the desired PML boundary. We have found through
pirical studies that a suitable form faris

f(x,y,2

=1+—= 18
a=t 1+ jeow’ (18)
where f (X, y, 2) is given by
1-B
fx,y,2) = ———. 19
0.y p(X, Y, 2) (19)

Here,p(X, Y, 2) is the discretized distance from the modeling space/PML interface to tl
centroid of the cell of interestinside the PML. The paramgtsrchosen to fix the amplitude
of f (X, y, 2). Todate, the best form @f(x, y, ) has been found to be linearin the distance a:
determined by numerical experimentation so thét, y, z) has an inverse type distribution,
such as that in [27, 28].

3.3. Solvers, Preconditioners, and Convergence Issues

The resulting matrix equation is solved using the biconjugate gradient stabiliz
(BICGSTAB) algorithm [29, 30] with simple diagonal preconditioning. The iterative so
lution converges very rapidly for lossless materials (see Beilerdiddf. [19]). However,
convergence results vary for lossy materials. When only electric losses are present (whit
our main interest in this paper), there is little change in the rate of convergence. Howeve
the presence of magnetic losses, the matrix symmetry is lost, which significantly increg
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the solution time—especially when it is necessary to use PML boundary conditions. .
though this problem does not concern us here because of the target application, it ¢
become important for other applications of the code. The problem may be alleviated to st
extent by a new choice of preconditioner (see, for example, van der Vorst [30], Drus
et al. [31], and Newman and Alumbaugh [13]. In general, there is a continuing need 1
better solvers and preconditioners for lossy EM problems.

4. EXAMPLES

To demonstrate the accuracy and convergence properties of the code FDFD, we |
tested various cases against analytical and semianalytical results. The set of results inc
1D, 2D, and 3D example problems.

A rectangular cavity (80nx 5m x 400m) is shown in Fig. 3. There are 16 cells in
the x direction, 1 cell in they direction, and 80 cells in thedirection. The frequency of
operation is 2 MHz, and the air/PML interfaces are locatefj at —100 m andZ, = —300
m. The dominant (Tk1) mode of the cavity is launched (in the frequency domain) b
imposing a sheet dEy having unit magnitude &, = —200 m (which is sufficient to pick
out the desired mode). The magnitude and phagsg, pfampled ak = 40 m, are shown in
Figs. 4 and 5. The FDFD results agree well with analytical calculations, the only signific:
deviations lying within the PML regions.

Next, a line of constant current (along thexis) is placed at the center of a “square
cavity” having square cross section in theplane and height in thez direction as shown
in Fig. 6. Each side has a length of 400 m (80 cells), and the height of the cavity is 5
(1 cell). The frequency of operation is 2 MHz. The magnitude and phakg afe shown
in Figs. 7 and 8. The data are plotted as a functiop ef x (for y = 0), which is pos-
itive when to the right of the line source or negative when to the left. The calculat
and analytical data agree well, with the only significant deviations occurring in the PN
region.
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FIG. 3. A rectangular cavity with dimensiors= 80 m b =5 m, andc = 400 m. Also,Z, = —200 m,
Z; = —100 m, andZ, = —300 m. The frequency of operation is 2 MHz.
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FIG. 4. The magnitude oE, atx = 40 m for the rectangular cavity.

The following two sets of 2.5D examples (i.e., one-dimensional layered model but :
fields computed using the full 3D code) shown here are based on the field geometry of Fi
Receivers are inside a borehole in a layered medium with air above the free surface.
first example of a buried resistive layer has a 60-m-thick layer with conducthvig S/m,
a 25-m-thick layer with conductivity= 0.016 S/m, and an 85-m layer with conductivity
0.3 S/m at the bottom of the model. Appropriately designed PML absorbing layers surrot
the modeled region on all six sides of the domain. The relative permittivity of all three ea
layers is constant and assumed to be equal to 10.0. The frequency of the excitation is 1
with the magnetic dipole transmitter located at the free surface with an offSenhdrom
the borehole. The finite-difference representation was chosen such that the unit spacir

......... FDFD
Analytical

Phase [degrees]

-100 -200 -300 -400
z [m]

FIG.5. The phase oE, atx = 40 m for the rectangular cavity.
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FIG. 6. A square cavity withxy dimensionsa = 400 m and heighh = 5 m. The line of current is along the
z axis. The frequency of operation is 2 MHz.

the earth model was 2.5 m, with 50 ceks50 cells in thexy direction, and 10 layers of

PML on those four sides. In the vertical direction, there were 68 cells in the earth moc
12 cells in the air above the free surface, and 10 more cells above and below for the F
layers. AllPML cells are 10 m thick in the directions away from the earth model. The over
problem is then approximately 7070 x 100 ~ 500000 cells. The computations were

performed on a DEC digital ultimate workstation (533 MHz), and required approximate
45 min of CPU time using about 260 iterations to achieve the convergence for the larg

2501

—— FDFD
......... Analytical

200

Ez [V/m]

100

501

-200 -100 0 100 200 300
Rho [m]

FIG. 7. The magnitude oE, for the square cavity.



840 CHAMPAGNE, BERRYMAN, AND BUETTNER

-100 —— FDFD
......... Analytical

-200T

-300

-400 T

-500

Phase [degrees]

-600 |

=700 [

-800 ' ' ‘ ' '
200 100 0 100 200 300

Rho [m]

FIG. 8. The phase oE, for the square cavity.

choice of tolerance (1®). The smallest tolerance (10) required about 3.4 h and 1200
iterations. This computation was serial and required about 700 MB of memory. In Figs.
and 11 the results of the code calculations for the magnetic field magnitude and pk
are compared with those for the same model obtained using the code EM1D (based
semianalytical formula for such layered models) developed by Ki-Ha Lee at LBNL. Tt
observed agreement is good for all choices of convergence tolerance, but becomes exc
for the two smallest values.

Since the buried resistive layer might be viewed as an easy case for the PML bece
the majority of the medium is conducting and therefore helping to attenuate the signa

Z

FIG. 9. Currentloop at the surface of the medium with a buried resistive layer. The same basic picture &
applies to our second example with a buried conducting layer, but the conductivity values are reversed (0.

0.016) in this case.
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Buried Resistive Layer: Magnitude Computations
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FIG. 10. Comparison of FDFD computed magnitude of magnetic field in the layered model with burie
resistive layer in Fig. 9 with semianalytic results from EM1D of Ki-Ha Lee (LBNL). The two smaller choices c
convergence tolerance give virtually the same results for this example, and are in good agreement with EM1

perhaps obviating the need for the PML—we have also tested the code for the rev
problem of a buried conductive layer in a resistive background. All other parameters are
same, including those used for the PML. The computation was performed as in the prev
example and required approximately 3.3 h of CPU time using about 1150 iterations
achieve convergence (with observed excellent agreement) for the intermediate choic

Buried Resistive Layer: Phase Computations
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FIG. 11. Comparison of FDFD computed phase of magnetic field in the layered model with buried resist
layer in Fig. 9 with semianalytic results from EM1D of Ki-Ha Lee (LBNL). The smallest choice of convergenc
tolerance gives virtually the same results as EM1D for this example, while the other two are also in good agreer
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Buried Conductive Layer: Magnitude Computations
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FIG. 12. Comparison of FDFD computed magnitude of magnetic field in the layered model with burie
conductive layer as in Fig. 9 (but reversing the values<8.8.016) with those from EM1D. All three choices of
convergence tolerance give virtually the same results for this example, and are in good agreement with EM1

tolerance (106). The smallest tolerance (10 required about 7.5 h and 2700 iterations.
In Figs. 12 and 13 the results of the code calculations for the magnetic field magnitt
and phase are again compared with those for the same model obtained using the

EM1D developed by Ki-Ha Lee at LBNL. The observed agreement is excellent for i
two smallest choices of convergence tolerance, but the resistive background case cl

Buried Conductive Layer: Phase Computations

T

oo C‘&-L,?<
e 2, + EM1D
—10of i _= |
10 0 TOL=102
+  TOL=10"
i - L -~ ]
20 P TOL=10 7
o ]
5301 -
L] o
@
% —40+ ::‘ A 2
= O
o *
-50F 1
—60t D
..,
-70 L L 1 1
20 40 60 80 100 120
Depth (m)

FIG. 13. Comparison of FDFD computed phase of magnetic field in the layered model with buried resisti
layer in Fig. 9 (but reversing the values 3:80.016) with those from EM1D. The largest deviation from EM1D
is observed here for the largest choice of convergence tolerance, while the two smallest values give virtually

same results as EM1D for this example.
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FIG.14. Currentloop atthe surface of the medium with a conductive body buried in a homogeneous half-sg
as in [26]. The frequency of operation is 1 kHz.

is harder to compute since the worst agreement seen here is for the phase at large de
when the largest choice of convergence toleranceY1®as in use.

Finally, consider the geometry shown in Fig. 14. which depicts a conductive body bur
within a homogeneous half-space with a rectangular loop of current as the excitation.
frequency of operation is 1 kHz. Tixecomponent of the electric field and theomponent
of the magnetic field are sampled along thexis about the origin. The magnitude and
phase of the electric field are shown in Figs. 15 and 16. The magnitude and phase o
magnetic field are displayed in Figs. 17 and 18. In each plot data from codes described in
are compared against data generated by FDFD. The three curves used in the compal
to FDFD are (a) IE for the full integral equation solution, (b) QRS for the quasi-lines
approximation using the simplest scalar reflectivity tensor, and (c) QRD for the quasi-lin
approximation using the diagonal reflectivity tensor. FDFD produces results similar to th
obtained from IE, QRS, and QRD for both the electric and magnetic fields in all cases. FD

.6
8 —— FDFD|
S IE
g st QRD
= L QRS
o] 3
°
L
) 2
B
K
Y 107t
o 8
o 7
g 6
£ s
(=] 4
[;]
= 3
2
10_3 2 1 1 1 1 J
-45 -30 -1§6 0 15 30 45

Distance [m]

FIG.15. Comparison of the scattered electric field magnitude for the model in Fig. 13. The fields are samy
along they axis about the origin.
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84r
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FIG. 16. Comparison of the scattered electric field phase for the model in Fig. 13. The fields are samp
along they axis about the origin.

is seen to be especially good at finding the dip in the magnetic field magnitude in Fig.
and at approximating the magnetic field phase in Fig. 18.

5. EM DATA INVERSION USING THE ADJOINT FIELD METHOD

The EM forward modeling capability was developed here with the ultimate goal
providing the tools needed for a fully nonlinear inversion technique for electromagne
induction tomography. Working in parallel, Doenal. [21] have developed a new approach
to the inverse problem of electromagnetics based on the so-called “adjoint field techniq

107r
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—
<

-

=
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)
o
)
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FIG.17. Comparison of the scattered magnetic field magnitude for the model in Fig. 13. The fields are samy
along they axis about the origin.
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FIG. 18. Comparison of the scattered magnetic field phase for the model in Fig. 13. The fields are samj
along they axis about the origin.

This method has the very useful property that the inverse problem can be solved in aniter:
fashion by making two uses of the same forward modeling code we have developed
validated here. Using a somewhat oversimplified description of this technique, the upd
to the electrical conductivity distribution are obtained by first making one pass throu
the forward solver using the latest best guess of the nature of the conducting medi
and then another pass with the adjoint operator (which, except for some minor differer
in the boundary conditions, is just the conjugate transpose of the forward modeling opere
applied to the differences in computed and measured data. Then the results of these
calculations are combined to determine updates to the original conductivity model. T
resulting procedure is iterative and can be applied successively to parts of the data,
data associated with one transmitter location can be used to update the model before
transmitter locations are considered. This procedure has several of the same advantac
the very well tested method of wave-equation migration in reflection seismology [32] a
is also related to more recent methods in electromagnetics introduced by Zhetaslov
[33].

We refer the reader to the published account [21] of these applications of the present «
to the data inversion problem for EMIT for more details.

6. CONCLUSIONS

A new code for 3D electromagnetics in the presence of highly conducting media |
been developed and validated here. The method has already been shown elsewhert
to provide all the tools required for constructing a new nonlinear computational inversi
scheme for imaging high-contrast electrical conductors in the earth, based on an adjoint
reconstruction method. Results obtained from this inversion method for such high-cont
media are encouraging and provide a significant improvement over results obtained f
linearized inversion methods such as the Born approximation [3].



846 CHAMPAGNE, BERRYMAN, AND BUETTNER

APPENDIX

Various special symbols used in this paper will now be defined. Kifstym, andz, are
the edge lengths of thath cell (Fig. 2) in thex, y, andz directions, respectively. Additional
lengths associated with the magnetic fields (staggered grid cell lengths) are given by

- Xm + Xd — Ym+ W = Zm + Z¢
X = = Im = . A.l
m 2 3 m 2 ’ m 2 ( )
Then, the area of the staggered grid cell face is given by
_ YmZm + Y2 + Y1 Zt + Vit 4t
x T 4 )
o, = XmZm + XdZd4 +4Xfo +dede’ (A.2)
XmYm + Xa¥Yd + X W + Xdi Yl
am, = 2

inthex, y, andz directions, respectively. Next, the permittivities associated with the electr
field at an edge are given by

— _ YmZmém, + MZé,, + YiZiEx,, + Vit At Eifyy

Emy = 4 s

— XmZmém,, + XdZd€d,, + Xt Zi €1, + Xdi Zdf€df,,

5myy = 4 5 (A3)
—  _ XmYmém,, + XdYd€d,, + X Vi€, + Xdi Yai€dl,,

szz _ 4 .

Finally, the magnetic permeabilities associated with the magnetic field component at a
are given by

Memy Medyy (Xm + Xq)

(Xmllvdxx + Xdexx) 7

iy, = My, M1y, (Ym + Y1) ’ (A.4)
(Ymitiy, + Y1 tm,,)

M, 4 1, (Zm + Z¢)

(Zm,bLfZZ + Zf,U«mZZ) '

Mmy, =

ﬁmzz =
The set of all these cell quantities is represented using matrices as

D, = Diag(..., Zm, Ym» Zm, - - -)»

Dy = Diag(. .., Zm, Ym, Xms - - .), (A-5)
Da = Diag(..., XmYm, XmZm> YmZm, - - .), (A6)
Da = Diag(.... am,. am, am,. - - - ),
Dae = Diag(. . .. &m,,. émy, Emyes - - - ) A7)

D, = Diag(..., ftm,, myys Ameo - - - )-
Additionally, the volume matrix is given by

Dvee = Diag( ..., Vim,. Vim,, Vi, - - ), (A.8)
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where
1 2 2 2 2
Vi, = 3 [|5mw XmYmZm + |€d,, | XaYaZa + |er. | Xz + |et,, | Xt yizs
2 2 2 2
+ |8dfw XdtYdfZdt + |3dl,m Xdl Ydi Zd1 + |<9If,m Xt Yifas + |<9dlfw,, XdIdeIdeIf} .
(A.9)
The vectorss, h, j, andm have the general form
f=(..., Fm, Fm, Fm, ... )- (A.10)

Fi
Wi

nally, the coefficient matrice andB are given as in Beilenhoét al.[19] and, therefore,
Il not be repeated here.
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