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A new 3D code for electromagnetic induction tomography with intended applica-
tions to environmental imaging problems has been developed. The approach consists
of calculating the fields within a volume using an implicit finite-difference frequency-
domain formulation. The volume is terminated by an anisotropic perfectly matched
layer region that simulates an infinite domain by absorbing outgoing waves. Exten-
sive validation of this code has been done using analytical and semianalytical results
from other codes, and some of those results are presented in this paper. The new code
is written in Fortran 90 and is designed to be easily parallelized. Finally, an adjoint
field method of data inversion, developed in parallel for solving the fully nonlinear
inverse problem for electrical conductivity imaging (e.g., for mapping underground
conducting plumes), uses this code to provide solvers for both forward and adjoint
fields. Results obtained from this inversion method for high-contrast media are en-
couraging and provide a significant improvement over those obtained from linearized
inversion methods. c© 2001 Academic Press

1. INTRODUCTION

Although electromagnetic surveying techniques of both the electrical-current-injection
type and the magnetic-field type have been well known for many years [1], the results
were typically only semiquantitative, and efforts to turn these surveys into true quanti-
tative 3D maps of electrical conductivity distribution in the subsurface have only been
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attempted in the past 10 to 15 years [2–4]. One of the main reasons for this delay has
surely been the necessity of using large computer memories and fast computing machines,
because it does not take a very large 3D forward modeling problem in typical geophys-
ical settings to swamp even today’s most advanced computing platforms. Of course, 3D
electromagnetic codes for various other applications are commonly available. One well-
developed example of such a multipurpose 3D electromagnetic code that has been tested
and used by many researchers is the 3D-MAFIA group of codes [5, 6]. These codes
were developed principally for laboratory-scale design studies and other forward mod-
eling purposes, but have limitations (such as the need for carefully designed nonreflecting
boundary conditions [7]) for use in geophysical imaging and data-inversion applications.
However, recent work on 3D magnetotellurics and controlled source electromagnetic un-
derground imaging as it has been pursued within the geophysics community includes pa-
pers by Hohmann [8], Mackieet al. [9], Torres-Verdin and Habashy [10], Newman and
Alumbaugh [11–13], and Smith [14, 15]. A recent review of the state of the art in 3D EM
modeling for such geophysical applications including detailed comparisons of results [16]
demonstrated both the limitations and the lack of consensus concerning the best methods
for computing EM fields in applications to very inhomogeneous, strongly conducting earth
materials.

Our specific interest here is in controlled source electromagnetic induction tomography
(EMIT), which is a comparatively new geophysical imaging method that has been pursued
with extensive field studies in recent years [3, 4, 17, 18]. But our ability to turn these field
data into well-resolved images of conducting inclusions, structures, and fluid plumes in the
earth has been hampered by the requirements for high accuracy forward computations at
useful levels of resolution. (We expand on the unique physical characteristics and imaging
abilities of EMIT in Section 2.) For these applications, we have developed a new 3D code
for use in electromagnetic induction tomography, especially for environmental imaging
problems. The finite-difference frequency-domain (FDFD) formulation is based on that in
[19], and an anisotropic perfectly matched layer (PML) approach [7, 20] is used to specify
the nonreflecting boundary conditions. The unique features of the method include perfectly
matched layer boundaries [7, 20], specifically tailored to provide optimum results in the
target frequency range (the lower kHz regime), and code structure that permits convenient
computation of the adjoint field operator (which is needed for the data-inversion method
developed in parallel [21]).

Section 2 introduces the electromagnetic induction tomography problem in more detail.
Section 3 describes the algorithm implemented in the code. Section 4 gives a series of
examples to provide code validation in various relevant limiting cases. Section 5 discusses
how the code has been used in the adjoint field approach to the data-inversion problem for
electromagnetic induction tomography and is followed by our conclusions.

2. ELECTROMAGNETIC INDUCTION TOMOGRAPHY

For enhanced recovery of oil and gas in the earth or for various types of environmental
cleanup efforts, it is often desirable to obtain images of conducting fluids underground.
The porous earth and some typical pore fluids like hydrocarbons tend to be comparatively
poor conductors, but other pore fluids that may be used in the extraction process (such
as brines) may be quite good electrical conductors. So imaging of conducting plumes
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FIG. 1. A possible EMIT experimental setup. Three boreholes surround the volume where we wish to image
the electrical conductivity. A z-directed dipole transmitter is deployed in one borehole, indicated in the lower left.
The data are then gathered either in the other boreholes or at the surface or both, indicated byx’s. A survey is
performed by repeating this process using a number of different transmitter locations. The imaginary part ofε(x)
is proportional to the electrical conductivity distribution in the medium and is what we want to reconstruct from
the measured magnetic field data.

(in real time if possible) is often a goal for monitoring of reservoirs and site characterization.
Figure 1 illustrates what might be a typical configuration if three boreholes are available
for the magnetic field data collection. The source is a magnetic field generated with current
in wire coils. Received signals are the measured (small) changes in magnetic field in other
boreholes, or at the surface of the earth.

Another EM field method that might also be used in similar circumstances is ground
penetrating radar (GPR) [22, 23]. However, this method employs EM fields at frequencies
in the range of 100 MHz or higher, whereas EMIT uses frequencies usually in the range of
1–10 kHz. At 100 MHz and above, it is a good approximation to think of GPR as a wave-
propagation method, although the wave does not penetrate very far into the earth when the
earth is wet and the wetting agent is a conductor because it is then highly attenuated. At
1–10 kHz, it is a good approximation to think of EMIT as a diffusion process—definitely
not a wave-propagation process. Then the imaginary part of the complex dielectric constant
ε is significantly larger than the real part, and so wave propagation gives way to diffu-
sion. Because the frequencies are so much lower, the diffusing magnetic fields penetrate
farther into the earth than a GPR signal can propagate, while behaving rather differently
from EM signals at either higher frequencies (GHz) or much lower (quasistatic) frequen-
cies (dc). These differences are what make the EMIT method useful, but also require some
special efforts to construct EM codes that behave as they should in the proper frequency
regime.

Dorn et al. [21] have shown how to invert EMIT data using an adjoint field method,
and the inversion scheme makes direct use of the code that we now describe. The results
obtained from this inversion method for high-contrast media are encouraging and pro-
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vide a significant improvement over results obtained from linearized inversion methods
[3].

3. FDFD ALGORITHM

The goal of this code development effort is to produce an accurate and efficient forward
simulation for EM fields that can then be easily used for inversion of EMIT field data. The
FDFD formulation presented here is an extension to lossy media of a method developed for
lossless media in [19]. The mesh-truncation approach involves using an anisotropic absorb-
ing PML following the ideas in [7, 24]. The absorbing regions have material parameters
similar to those proposed in [25]. The code is written in Fortran 90, and ease of portabil-
ity to various high performance computing platforms has been one of our design criteria
throughout its development.

3.1. Finite-Difference, Frequency-Domain Formulation

To develop a system of equations to determine the electric and magnetic fields within a
volume, the integral form of Maxwell’s curl equations (Amp`ere’s and Faraday’s laws),

∮
C

H · d` = jω
∫

S
(ε̄ · E) · n̂dS+

∫
S

J · n̂ dS (1)

and ∮
C

E · d` = − jω
∫

S
(µ̄ · H) · n̂ dS−

∫
S

M · n̂ dS, (2)

are used. HereJ is the impressed electric-current density,M is the impressed magnetic-
current density, ¯ε and µ̄ are diagonal dyads of dielectric permittivity and magnetic per-
meability, respectively, andC is the boundary of the open surfaceS. The integrals in (1)
and (2) are applied to discrete elements (rectangular blocks) within the volume assuming
approximately constant fields within each block and using the elementary relations∫ a/2

−a/2
f · d`→ a fm (3)

and ∫ a/2

−a/2

∫ b/2

−b/2
f · n̂ dS→ abfm, (4)

where fm is a center value associated with themth cell shown in Fig. 2. Note that the
discrete electric field is located at the center of an edge, and the discrete magnetic field flows
through the centroid of a face. Also, themth cell is normally referred to as cell (i, j, k), but
for notational convenience, a cell mapping using symbols such asu, d, l , r, f, b (for up,
down, left, right, front, back, respectively) to specify the six cells surrounding themth cell
is used. This mapping is presented in Table I. Cells other than the six cells adjacent to the
six faces may also be labeled using the same mapping. For example, relative to cellm, cell
d f is cell (i − 1, j, k− 1) and celldlb is cell (i − 1, j − 1, k+ 1).
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FIG. 2. The field quantities associated with themth cell (i, j, k).

The discretized forms of (1) and (2) result in an equation for each field component. The
resulting equations are cumbersome; however, presenting each expression using matrices
provides a compact form. Thus, extending the lossless and isotropic methods of Beilenhoff
et al. [19] to our case of lossy and anisotropic media, and using notation defined in the
Appendix, (1) and (2) become

ATD ¯̀Eh = jωε0 DAε Ee+ DĀ
Ej (5)

and

AD` Ee= − jωµ0 DA Dµ Eh− DA Em, (6)

respectively. The apparent lack of symmetry in the pair of equations (5) and (6) arises from
differences in the method of discretizingε andµ on the staggered grid (see the Appendix
for details). Solving for the magnetic field (to eliminate it from the equations) in (6) and
then substituting the result in (5) yield

ATD ¯̀D−1
µ D−1

A AD` Ee− k2
0 DAε Ee= − jωµ0 DĀ

Ej − ATD ¯̀D−1
µ Em, (7)

TABLE I

Labels for Cells Surrounding

m = Cell (i, j, k)

d= cell (i − 1, j, k) u= cell (i + 1, j, k)
l = cell (i, j − 1, k) r = cell (i, j + 1, k)
f = cell (i, j, k− 1) b= cell (i, j, k+ 1)
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which has a form entirely analogous to that commonly used in finite-element codes, i.e.,

∇× (µ̄−1
r ·∇× E

)− k2
0ε̄r · E = − jωµ0J−∇× µ̄−1

r ·M , (8)

even though our goal here is to develop a finite-difference code.
A problem commonly observed in numerical computations of Maxwell’s equations arises

because of a possible resonance at zero frequency. If this occurs, the resulting matrix
has an eigenvalue at zero and therefore is neither positive definite nor invertible. For the
geometries considered here, the fields for resonant frequency of 0 Hz are generated only
by electric charge within the volume. Such charges may develop as an artifact of numerical
roundoff when evaluating the vector wave equation—especially at lower frequencies (see,
for example, Smith [14]). This problem is avoided here by eliminating any charge within
the volume using a term analogous to

∇[∇ · (ε̄r · E)] = 0, (9)

forcing the gradient of the charge densityρ = ∇ · (ε̄r · E) to be zero. The numerical
implementation is achieved by starting from Gauss’s law for the electric field in integral
form,

∫
V
∇ · (ε̄r · E) dV =

∮
S
(ε̄r · E) · n̂ dS= 0, (10)

to arrive at the discretized matrix expression

[
D−1
` D∗Aε BT

(
D−1

Vεε BDAε
)]Ee= E0, (11)

where the matrices in parentheses arise from discretizing (10), while the remaining matrices
in the square brackets arise from discretizing (9) after the application of an integral identity.
The matrixB (not to be confused with the magnetic-flux density, or magnetic induction,B)
is also defined in the Appendix. When (11) is added to (7), the result is

(
ATD ¯̀D−1

µ D−1
A AD` + D−1

` D∗AεB
TD−1

VεεBDAε − k2
0DAε

)Ee
= − jωµ0DĀ

Ej − ATD ¯̀D−1
µ Em. (12)

However, a more symmetric form is obtained by multiplying throughout byD1/2
` and then

rewriting (12) as

(
D1/2
` ATD ¯̀D−1

µ D−1
A AD1/2

` + D−1/2
` D∗AεB

T D−1
VεεBDAεD

−1/2
` − k2

0DAε
)
D1/2
` Ee

= − jωµ0D1/2
` DĀ

Ej − D1/2
` ATD¯̀D−1

µ Em. (13)

Note the appearance in these two equations of the complex conjugate matrixD∗Aε, which
becomes necessary when losses are incorporated intoε.
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3.2. PML Formulation for Mesh Truncation

The mesh is truncated using PMLs that absorb electromagnetic waves following the
general ideas in [7]. The PML is a representation of anisotropic media satisfying

D = ε̄PML · E and B = µ̄PML · H, (14)

where

ε̄PML = ε̄ · Λ̄ and µ̄PML = µ̄ · Λ̄. (15)

The symbolΛ̄ stands for a diagonal dyad that has entries selected to absorb incident
electromagnetic waves. The form of this dyadic quantity is determined by the normal to the
PML interface. As an example, for a PML interface with a normal in thez direction, the
form of Λ̄ is given by [20, 25],

Λ̄z =
a 0 0

0 a 0
0 0 1/a

 , (16)

in whicha is given by

a = 1+ f (x, y, z)

1+ jαω
, (17)

whereα is a constant andf (x, y, z) is a function of position that is zero at the interface
between the modeling space and the desired PML boundary. We have found through em-
pirical studies that a suitable form fora is

a = 1+ f (x, y, z)

1+ j ε0ω
, (18)

where f (x, y, z) is given by

f (x, y, z) = (1− j )β

ρ(x, y, z)
. (19)

Here,ρ(x, y, z) is the discretized distance from the modeling space/PML interface to the
centroid of the cell of interest inside the PML. The parameterβ is chosen to fix the amplitude
of f (x, y, z). To date, the best form ofρ(x, y, z)has been found to be linear in the distance as
determined by numerical experimentation so thatf (x, y, z) has an inverse type distribution,
such as that in [27, 28].

3.3. Solvers, Preconditioners, and Convergence Issues

The resulting matrix equation is solved using the biconjugate gradient stabilized
(BiCGSTAB) algorithm [29, 30] with simple diagonal preconditioning. The iterative so-
lution converges very rapidly for lossless materials (see Beilenhoffet al. [19]). However,
convergence results vary for lossy materials. When only electric losses are present (which is
our main interest in this paper), there is little change in the rate of convergence. However, in
the presence of magnetic losses, the matrix symmetry is lost, which significantly increases
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the solution time—especially when it is necessary to use PML boundary conditions. Al-
though this problem does not concern us here because of the target application, it could
become important for other applications of the code. The problem may be alleviated to some
extent by a new choice of preconditioner (see, for example, van der Vorst [30], Druskin
et al. [31], and Newman and Alumbaugh [13]. In general, there is a continuing need for
better solvers and preconditioners for lossy EM problems.

4. EXAMPLES

To demonstrate the accuracy and convergence properties of the code FDFD, we have
tested various cases against analytical and semianalytical results. The set of results includes
1D, 2D, and 3D example problems.

A rectangular cavity ( 80 m× 5 m × 400 m ) is shown in Fig. 3. There are 16 cells in
the x direction, 1 cell in they direction, and 80 cells in thez direction. The frequency of
operation is 2 MHz, and the air/PML interfaces are located atZ1 = −100 m andZ2 = −300
m. The dominant (TE101) mode of the cavity is launched (in the frequency domain) by
imposing a sheet ofEy having unit magnitude atZ0 = −200 m (which is sufficient to pick
out the desired mode). The magnitude and phase ofEy, sampled atx = 40 m, are shown in
Figs. 4 and 5. The FDFD results agree well with analytical calculations, the only significant
deviations lying within the PML regions.

Next, a line of constant current (along thez axis) is placed at the center of a “square
cavity” having square cross section in thexy plane and heightb in thez direction as shown
in Fig. 6. Each side has a length of 400 m (80 cells), and the height of the cavity is 5 m
(1 cell). The frequency of operation is 2 MHz. The magnitude and phase ofEz are shown
in Figs. 7 and 8. The data are plotted as a function ofρ = x (for y = 0), which is pos-
itive when to the right of the line source or negative when to the left. The calculated
and analytical data agree well, with the only significant deviations occurring in the PML
region.

FIG. 3. A rectangular cavity with dimensionsa = 80 m, b = 5 m, andc = 400 m. Also,Z0 = −200 m,
Z1 = −100 m, andZ2 = −300 m. The frequency of operation is 2 MHz.
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FIG. 4. The magnitude ofEy at x = 40 m for the rectangular cavity.

The following two sets of 2.5D examples (i.e., one-dimensional layered model but 3D
fields computed using the full 3D code) shown here are based on the field geometry of Fig. 9.
Receivers are inside a borehole in a layered medium with air above the free surface. The

first example of a buried resistive layer has a 60-m-thick layer with conductivity= 0.3 S/m,
a 25-m-thick layer with conductivity= 0.016 S/m, and an 85-m layer with conductivity=
0.3 S/m at the bottom of the model. Appropriately designed PML absorbing layers surround
the modeled region on all six sides of the domain. The relative permittivity of all three earth
layers is constant and assumed to be equal to 10.0. The frequency of the excitation is 1 kHz
with the magnetic dipole transmitter located at the free surface with an offset of 5 m from
the borehole. The finite-difference representation was chosen such that the unit spacing in

FIG. 5. The phase ofEy at x = 40 m for the rectangular cavity.



3D ELECTROMAGNETIC CODES 839

FIG. 6. A square cavity withxy dimensions:a = 400 m and heightb = 5 m. The line of current is along the
z axis. The frequency of operation is 2 MHz.

the earth model was 2.5 m, with 50 cells× 50 cells in thexy direction, and 10 layers of
PML on those four sides. In the vertical direction, there were 68 cells in the earth model,
12 cells in the air above the free surface, and 10 more cells above and below for the PML
layers. All PML cells are 10 m thick in the directions away from the earth model. The overall
problem is then approximately 70× 70× 100 ' 500,000 cells. The computations were
performed on a DEC digital ultimate workstation (533 MHz), and required approximately
45 min of CPU time using about 260 iterations to achieve the convergence for the largest

FIG. 7. The magnitude ofEz for the square cavity.
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FIG. 8. The phase ofEz for the square cavity.

choice of tolerance (10−5). The smallest tolerance (10−7) required about 3.4 h and 1200
iterations. This computation was serial and required about 700 MB of memory. In Figs. 10
and 11 the results of the code calculations for the magnetic field magnitude and phase
are compared with those for the same model obtained using the code EM1D (based on a
semianalytical formula for such layered models) developed by Ki-Ha Lee at LBNL. The
observed agreement is good for all choices of convergence tolerance, but becomes excellent
for the two smallest values.

Since the buried resistive layer might be viewed as an easy case for the PML because
the majority of the medium is conducting and therefore helping to attenuate the signal—

FIG. 9. Current loop at the surface of the medium with a buried resistive layer. The same basic picture also
applies to our second example with a buried conducting layer, but the conductivity values are reversed (0.3↔
0.016) in this case.



3D ELECTROMAGNETIC CODES 841

FIG. 10. Comparison of FDFD computed magnitude of magnetic field in the layered model with buried
resistive layer in Fig. 9 with semianalytic results from EM1D of Ki-Ha Lee (LBNL). The two smaller choices of
convergence tolerance give virtually the same results for this example, and are in good agreement with EM1D.

perhaps obviating the need for the PML—we have also tested the code for the reverse
problem of a buried conductive layer in a resistive background. All other parameters are the
same, including those used for the PML. The computation was performed as in the previous
example and required approximately 3.3 h of CPU time using about 1150 iterations to
achieve convergence (with observed excellent agreement) for the intermediate choice of

FIG. 11. Comparison of FDFD computed phase of magnetic field in the layered model with buried resistive
layer in Fig. 9 with semianalytic results from EM1D of Ki-Ha Lee (LBNL). The smallest choice of convergence
tolerance gives virtually the same results as EM1D for this example, while the other two are also in good agreement.
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FIG. 12. Comparison of FDFD computed magnitude of magnetic field in the layered model with buried
conductive layer as in Fig. 9 (but reversing the values 0.3↔ 0.016) with those from EM1D. All three choices of
convergence tolerance give virtually the same results for this example, and are in good agreement with EM1D.

tolerance (10−6). The smallest tolerance (10−7) required about 7.5 h and 2700 iterations.
In Figs. 12 and 13 the results of the code calculations for the magnetic field magnitude
and phase are again compared with those for the same model obtained using the code
EM1D developed by Ki-Ha Lee at LBNL. The observed agreement is excellent for the
two smallest choices of convergence tolerance, but the resistive background case clearly

FIG. 13. Comparison of FDFD computed phase of magnetic field in the layered model with buried resistive
layer in Fig. 9 (but reversing the values 0.3↔ 0.016) with those from EM1D. The largest deviation from EM1D
is observed here for the largest choice of convergence tolerance, while the two smallest values give virtually the
same results as EM1D for this example.
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FIG. 14. Current loop at the surface of the medium with a conductive body buried in a homogeneous half-space
as in [26]. The frequency of operation is 1 kHz.

is harder to compute since the worst agreement seen here is for the phase at large depths,
when the largest choice of convergence tolerance (10−5) was in use.

Finally, consider the geometry shown in Fig. 14. which depicts a conductive body buried
within a homogeneous half-space with a rectangular loop of current as the excitation. The
frequency of operation is 1 kHz. Thex component of the electric field and thez component
of the magnetic field are sampled along they axis about the origin. The magnitude and
phase of the electric field are shown in Figs. 15 and 16. The magnitude and phase of the
magnetic field are displayed in Figs. 17 and 18. In each plot data from codes described in [26]
are compared against data generated by FDFD. The three curves used in the comparisons
to FDFD are (a) IE for the full integral equation solution, (b) QRS for the quasi-linear
approximation using the simplest scalar reflectivity tensor, and (c) QRD for the quasi-linear
approximation using the diagonal reflectivity tensor. FDFD produces results similar to those
obtained from IE, QRS, and QRD for both the electric and magnetic fields in all cases. FDFD

FIG. 15. Comparison of the scattered electric field magnitude for the model in Fig. 13. The fields are sampled
along they axis about the origin.
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FIG. 16. Comparison of the scattered electric field phase for the model in Fig. 13. The fields are sampled
along they axis about the origin.

is seen to be especially good at finding the dip in the magnetic field magnitude in Fig. 17
and at approximating the magnetic field phase in Fig. 18.

5. EM DATA INVERSION USING THE ADJOINT FIELD METHOD

The EM forward modeling capability was developed here with the ultimate goal of
providing the tools needed for a fully nonlinear inversion technique for electromagnetic
induction tomography. Working in parallel, Dornet al. [21] have developed a new approach
to the inverse problem of electromagnetics based on the so-called “adjoint field technique.”

FIG. 17. Comparison of the scattered magnetic field magnitude for the model in Fig. 13. The fields are sampled
along they axis about the origin.
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FIG. 18. Comparison of the scattered magnetic field phase for the model in Fig. 13. The fields are sampled
along they axis about the origin.

This method has the very useful property that the inverse problem can be solved in an iterative
fashion by making two uses of the same forward modeling code we have developed and
validated here. Using a somewhat oversimplified description of this technique, the updates
to the electrical conductivity distribution are obtained by first making one pass through
the forward solver using the latest best guess of the nature of the conducting medium,
and then another pass with the adjoint operator (which, except for some minor differences
in the boundary conditions, is just the conjugate transpose of the forward modeling operator)
applied to the differences in computed and measured data. Then the results of these two
calculations are combined to determine updates to the original conductivity model. The
resulting procedure is iterative and can be applied successively to parts of the data, e.g.,
data associated with one transmitter location can be used to update the model before other
transmitter locations are considered. This procedure has several of the same advantages as
the very well tested method of wave-equation migration in reflection seismology [32] and
is also related to more recent methods in electromagnetics introduced by Zhdanovet al.
[33].

We refer the reader to the published account [21] of these applications of the present code
to the data inversion problem for EMIT for more details.

6. CONCLUSIONS

A new code for 3D electromagnetics in the presence of highly conducting media has
been developed and validated here. The method has already been shown elsewhere [21]
to provide all the tools required for constructing a new nonlinear computational inversion
scheme for imaging high-contrast electrical conductors in the earth, based on an adjoint field
reconstruction method. Results obtained from this inversion method for such high-contrast
media are encouraging and provide a significant improvement over results obtained from
linearized inversion methods such as the Born approximation [3].
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APPENDIX

Various special symbols used in this paper will now be defined. First,xm, ym, andzm are
the edge lengths of themth cell (Fig. 2) in thex, y, andzdirections, respectively. Additional
lengths associated with the magnetic fields (staggered grid cell lengths) are given by

x̄m = xm + xd

2
, ȳm = ym + yl

2
, z̄m = zm + zf

2
. (A.1)

Then, the area of the staggered grid cell face is given by

amx =
ymzm + yl zl + yf zf + yl f zl f

4
,

amy =
xmzm + xdzd + x f zf + xd f zd f

4
, (A.2)

amz =
xmym + xd yd + xl yl + xdl ydl

4

in thex, y, andzdirections, respectively. Next, the permittivities associated with the electric
field at an edge are given by

ε̄mxx =
ymzmεmxx + yl zl εl xx + yf zf ε fxx + yl f zl f εl f xx

4
,

ε̄myy =
xmzmεmyy + xdzdεdyy + x f zf ε fyy + xd f zd f εd fyy

4
, (A.3)

ε̄mzz =
xmymεmzz + xd ydεdzz + xl yl εl zz + xdl ydlεdlzz

4
.

Finally, the magnetic permeabilities associated with the magnetic field component at a face
are given by

µ̄mxx =
µmxxµdxx(xm + xd)(
xmµdxx + xdµmxx

) ,
µ̄myy =

µmyyµl yy(ym + yl )(
ymµl yy + ylµmyy

) , (A.4)

µ̄mzz =
µmzzµ fzz(zm + zf )(
zmµ fzz + zfµmzz

) .
The set of all these cell quantities is represented using matrices as

D` = Diag(. . . , zm, ym, zm, . . .), (A.5)
D¯̀ = Diag(. . . , z̄m, ȳm, x̄m, . . .),

DA = Diag(. . . , xmym, xmzm, ymzm, . . .),
(A.6)

DĀ = Diag
(
. . . ,amz,amy,amx , . . .

)
,

DAε = Diag
(
. . . , ε̄mzz, ε̄myy, ε̄mxx, . . .

)
,

(A.7)
Dµ = Diag

(
. . . , µ̄mzz, µ̄myy, µ̄mxx, . . .

)
.

Additionally, the volume matrix is given by

DVεε = Diag
(
. . . ,Vmz,Vmy,Vmx , . . .

)
, (A.8)
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where

Vmα
= 1

8

[∣∣εmαα

∣∣2xmymzm +
∣∣εdαα

∣∣2xd ydzd +
∣∣εlαα

∣∣2xl yl zl +
∣∣ε fαα

∣∣2x f yf zf

+ ∣∣εd fαα

∣∣2xd f yd f zd f +
∣∣εdlαα

∣∣2xdl ydl zdl +
∣∣εl fαα

∣∣2xl f yl f zl f +
∣∣εdl fαα

∣∣2xdl f ydl f zdl f

]
.

(A.9)

The vectorsEe, Eh, Ej , and Em have the general form

Ef = ( . . . , Fmz, Fmy, Fmx , . . .
)
. (A.10)

Finally, the coefficient matricesA andB are given as in Beilenhoffet al.[19] and, therefore,
will not be repeated here.
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